Distributed computing has markedly advanced the efficiency and reliability of complex numerical tasks, particularly matrix multiplication, which is central to numerous computational applications from ...
What do encrypted messages, recognizing speech commands and running simulations to predict the weather have in common? They all rely on matrix multiplication for accurate calculations. DeepMind, an ...
“All things are numbers,” avowed Pythagoras. Today, 25 centuries later, algebra and mathematics are everywhere in our lives, whether we see them or not. The Cambrian-like explosion of artificial ...
In this video from PASC17, Alfio Lazzaro (University of Zurich, Switzerland) presents: Increasing Efficiency of Sparse Matrix-Matrix Multiplication. “Matrix-matrix multiplication is a basic operation ...
AI training time is at a point in an exponential where more throughput isn't going to advance functionality much at all. The underlying problem, problem solving by training, is computationally ...
Multiplying the content of two x-y matrices together for screen rendering and AI processing. Matrix multiplication provides a series of fast multiply and add operations in parallel, and it is built ...
New lower values for p get discovered all the time (maybe once a year). It is conjectured that they will approach 2.0 without ever getting quite to it. Somehow Quanta Mag heard about the new result ...
Sparse matrix computations are prevalent in many scientific and technical applications. In many simulation applications, the solving of the sparse matrix-vector multiplication (SpMV) is critical for ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results